¢S

'S
-
=
=
E———
_ .
=05
e
c =23
=00
=90
-t g’é’o
</7—’_’o -
2= .
wgw
s =
— =M
é?’——m
-
Ee———Ap]
e
=
=
o r
{2
lvucemmdM|¢m~m0waNu.8.o.-_ [sae Chy fom. 0t mmubuﬂuvm
r 1he pudhshed lorm of e Contridution, &7 %0 sllow others 10 €9 8e. for US. overnment pun ases
e Tne LonAWNnmuu..m.v_ t3 At the o0k idondly s B/HC'e 88 WO Par Srmg.: YRGS IKG BUD:Cos of he U.§ Department of Enerse
-

nrte: NONLINEAR SIGNAL PROCESSING USIN™ NEUR/

PREDICTION AND SYSTEM MODELLING

authongsy Alan S. Lanedes

Robert Farber

suorTTeDd 7o Procecdngs wE-{EEE

Los Alamnos

0AL O 8% R4

Los Alarac's National Laboratory
Los Alar xc.s,New Mexico 87545

R

1o Al3mos NaLonM Laberaesry ig 0pera 2¢ by the Universiy of Comlornia tor ihe Un: vd States O seriment of Energy under contract W.T7403.ENG 36

NLTWORKS :

+~ 88

7

July 1987

NONLINEAR SIGNAL PROCESSING USING NEURAL NETWORKS:
PREDICTION AND SYSTEM MODELLING

Alan Lapedes
Robert Farber
Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

The backpropagation learning algorithm for neural networks
is developed into a formalism for nonlinear signal
processing. We illustrate the method by selecting two common
topics in signal processing, prediction and system
modelling, and show that nonlinear applications can be
handled extremely well by using neural networks. The
formalism is a natural, nonlinear extension of the linear
Least Mean Squares algorithem commonly used in adaptive
signal processing. Simulations are presented that document
the addftional performance achieved by using nonlinear
neural networks. First, we demonstrate that the formalism
may be used to predict points in a highly chaotic time
series with orders of magnitude increase in accuracy over
conventional methods including the Linear Predictive Method
and the Gabor-Volterra-Weiner Polynomial Method. Deter-
ministic chaos is thought to be involved in many physical
situations including the onset of turbulence in fluids,
chemical reactions and plasma physics. Secondly, we demon-
strate the use of the formalism in nonlinear system
modelling by providing a graphic example in which it is
clear that the neural network has accurately modelled the
nonlinear transf-r function. It is interesting to note that
the formalism p.ovides explicit, analytic, global, approx-
imations to the nonlinear maps underlying the various time
series. Furthermore, the neural net seems to be extremely
parsimonious in its requirements for data points fr.m the
time series. We show that the neural net is able to perform
well because it globally approximates the relevant maps
by performing a kind of generalized mode decomposition of
the maps. Use of trigonometric sin's, instead of the usual
sigmoids, for the’neural net transfer function leads to a
type of generalized Fourier analysis. One may also view the
approximation procedure of the neural net in relation to a
spline fitting method, which in many instances is known to
be preferrable to a simple polynomial fitting method. The
specific simulations that are presented are intended tc¢
illustrate some of the capabilities of the formalism and are
not thought to exhaust the range of application.

B

Ie, Introduction

Adaptive signal processing is a topic of considerable practical
interest. A common approach to signal processing uses preduminantly linear
analysis, which not surprisingly, does not perform as well as desired when

used to process signals emitted by- a nonlinear system. We show that a

natural extension of linear methods into the. norlinear domain is provided

by the nonlinear neural net learning algorithm called “back
propagation."(l) As expliained in Section II, our technique stems from the
relatively simple idea of inserting “hidden units" (a layer of nonlinear
neuron-like elements) into the 1linear "Adaline" adaptation framework
of Widrow-Hoff, (2, 3) and then using back propagation to control the
weights. The input and output elements are kept as linear elements in
order to provide an extended dynamic range. The original "Adaline" or
“Least Mean Square"(z) adaptation rule (in wide use in modern signal
processing; may be thought of as a learning rule for a totally linear

neural network. There is then a logical progression to the nonlinear

networks, that we use, which may be summarized as follows:
Adaline (Least Mean Square) - Widrow-Hoff -+ Perceptron -~ Backpropagation

Back propagation so far, has mainly been used in situations where the
inputs and outputs of the network are nonlinear and achieve binary values.
That s, it has been predominantly used in processing symbolic
information.(l) Letting the input and output neurons be linear elements

extends the. -dynamic .%ange. @nd allows processing of real valued
inputs/outputs such as occur in signal processing applications. The
"hidden" nonlinear neurons use a continuous, nonlinear (and nronpoly-

nomial)activation function. It is the ability to control nonlinearity

in the neural net that allows prediction in chaotic time series with an

PO

"

-3-

accuracy far exceeding convention;l methods. Chaotic Lime series are
emitted by deterministic nonlinear systems and are sufficiently complicated
that they appear to be “randon\"l time series. However, because there is an
underlying deterministic map that generates the series there is a closer
analogy to pseudo random number generators than to stochastic randomness.
Nonlinear neural nets are able to perform well because they extract, and
very accurately abproximate. these underlying maps. DOeterministic chaos
has been implicated in a large number of physical situations including the
(7)

onset of turbulence in fluids;(a)' (5) chemical reactions.(e) lasers,

P o n

and plasma physics‘s) to name but a few. Furthermore, chaotic systems can
also display the full range of less complicated nonlinear behavior (e.g.
attraction to a fixed point and limit cycles) if various parameters in the
system are changed. They therefore provide an excellent test bed in which
to investigate nonlinear signal processing techniques. We have selected
two chaotic time series: one generated by an explicit nonlinear iterated
map (the logistic or Feigenbaum map) and another generated by a nonlinear,
differential delay equation (the Mackey;Glass equation). Prediction using
nonlinear neural networks exceeds conventional methods by orders of
magnitude in accuracy.

In addition to possible applications, the domain of real valued signal
processing also provides a nice setting in which to investigate properties
of the back propagation algorithm itself. One property, the ability to

form limited generalizations, has frequently been tested with "symbolic"

(binary) input/output pairs.(l)'(g) Unfortunately, it has been difficult

to obtain a really cleaﬁ:example of this ability to generalize. On the
other hand, Section IV provides:?n example in nonlinear system modelling in
which it is clear that the neural net has inferred from a finite data set
The soméwhat

the correct algorithm that transforms input to output.

mysterious ability of neural networks to “deduce" algorithms and to “gen-

-4~

eralize"” is shown to be nothing more than real valued function inter-
polation when viewed in the context of signal proceusing. The modeling

example we chose to analyze in Section IV is a “plant” (to use control

system termonology) that implements x(t) » x4(t) (see figure 1). Here x(t)
is an arbitrary input wave form and the network has to learn to output
x2(t) by learning on a training set consisting ot input/output pairs that
are samples at discrete times. We trained the network on a set of
input/output pairs from a specific, broadband x(t), and used back
propagation to adjust the network weights. If the net correctly inferred
the algorithm x -+ x2(t) then input (after training) of a different,
arbitrary wave form x(t) should result in the correct x? of the new signal.
This is the case. Furthermore, if the input to the network is x(t) and
x(t - At), then the network output should be an approximation to [x(t) -
x(t - At]2/At2. Thus, a graph of the output, x2, versus the inputs x(t),
x(t -At) should be an approximation parabolic trough. We plot the output
of the neural net versus x(t), x(t - At) (see Figures 11, 12) and the
resultant parabolic troagh is explicit graphic verification that the
network has indeed learned the correct algorithm from a finite set of
input/output pairs.

A competing approach to processing nonlinear signals would be to form
polynomials in the data terms (the polynomfals providing nonlinearity in
the data) and to adjust the linear weight factor coefficient for each
polynomial term using the Least Mean Square algorithm. This approach was
advocated by Gabor and 15 related to the Volterra-Weiner expansxon(lo)
nonlinear systems. It has the advantage that polynomial nonlinearities may
be modelled exactly, and that-one is always assured of finding a global
minimum to the Least Mean Square problem. Disadvantages, however, are

considerabtle. Fifst of all, nonpolynomial nonlinearities must be modelled

bv oolvnomials, which is widely known to be a undesirable procedure due to

_5-

the rapid oscillation of polynomials. Secondly, one has an explosion in
the number of the polynomial coefficients as the system sis«, or order of
the polynomial, is increased. Finally, a polynomial approximation is
wildly unstable under iteration. Iteration, as we demonstrate in Section
IIl, is the key to achieving accurate predictions over long times.
Acceptable accuracy may be achieved by polynomial methods over short times,
which is clearly a much less interesting situation in comparison to long-
term prediction. The nonlinear neural net is orders of magnitude more
accurate for long-term prediction. Finally, we demonstrate in Sections III
and IV that if the relevant system nonlinearity is indeed a polynomial,
then very good approximations to the polynomial may be achieved by using
nonlinear nonpolynomial neural nets. We therefore feel that the nonlinear
neural net method presented here has considerable advantages in both
accuracy, and flexibility, over the more conventional methods.

The reason that the neural net formalism for signal processing works
well seems to be related to the fact that the network is performing a kind
of generalized mode decomposition of the underlying maps. Changing the
neurons's transfer function from sigmoids to sind changes the analysis
to a generalized Fourier analysis. Other nonlinear, neural transfer
functions are also possible and should be choosen to make a best match to
the problem at hand. Another interpretation (Section V) is related to
spline fitting procedures. The difference between mode decompoposition
vs simple polynomial fitting, distinguishes neural networks from the Gabor
(10)

Weiner, Volterra polynomig] analysis of nonlinear systems.

The examples of bredittion and nonlinear system modelling were choosen
somewhat arbitrarily as a means to illustrate the capabilities of the
formalism. The success achieved in these examples might reasonably be

taken as an indication that further development of these methods could have

L ¥

-6-

wider applicability. Results of experiments on specific applications will

be reported elsewhere.

II. The Linear Predictive Method and Back Propagyation

Prediction is a useful ability in signal processing that also has
application in many other areas such as data compression. A common method
of prediction’in signal processing is the Linear Predictive Method.(ll) In
this approach one uses the values of a continuous signal, x(t), at a set of
discrete times in the past, to predict x(t) at a point in the future. For
example, one might use three values in the past, x(t), x(t - A), x(t - 23)
to predict a value that is some time in the future, perhaps x(t + 2aA). A
is a time increment. The predicted value is a linearly weighted sum of the
delayed (past) x(t) values. Representing this algorithm in a diagram (Fig.
2) makes it clear that one can view this method as a linear, feedforward,
neural net with no "hidden units.* Each line in the figure linearly
weights the corresponding input so that the output is a linearly weighted
sum of input values. (See Figure 2.)

The weight values, Tij are determined in the Linear Predictive Method
by training the system using a set of discrete time samples from a segment

of known signal. Labelling the neurons from i = 0 to 3 yields (for Figure

2)

X3(t + 28) = T3ox0(t) + T31X1(t = 4) # T32X2(t - 24) ¢ 13 (1)

or more generally, if there is more than one output,

X, =’:,Tijxj’\1i (2)
J B

For nonlinear neural nets Ii“is referred to as "threshold" and we will

continue to use that notation even for linear networks. If we label

discrete times in the training set as tp, then Tij may be determined

7 -~ 838 !

-7-

by minimizing the mean square error, £

E=3 (Xt ,8) - 2T, .X.(t_.a) - I.]° (1)

ip 1 J ‘J J P '
In the above, i ranges over the output units, which for the esamgle of
equation (1) contains just one term for i = 3. p indexes the discrete
times in the training set. This is a usual, linear, least mean squares
problem that say be solved, for example, by steepest descents. Steepest
descents is implemented by successively changing Tij by an amsount '“ij
where

ATij-'-'Csrij—

where ¢ is a small number. li is determined in a similar manner. The fors
of Eqns. (1) and (4) show that the commonly used Linear Predictive method
for signal processing is the trivial (i.e. linear) limit of the back
propagation algoritha for nonlinear neural networks.
(10)

The Gabor Polynomfal Predictive Method is a straightforward

extension of these fdeas. In this formalism, each input neuron represents
one term in a polynomial expansion of the data. Ffor example, if the
polynomial is specified to be second order, then there will be three first
order terms (already represented) and an additional six neurons
representing the six possible cross terms of of xo(t). xl(t = Aa), xz(t.
-24). The wefights appear as linear coefficients of these cross terms.
Therefore, the Linear Least Mean Square algoritha works for the Gabor
Polynomial Method with virtually no change in implementation. One
disadvantage of the polynomial method is already clear. If there are d
data items to be combined into a general m B order polynomial (for the

above example d = 3, m = 2) then the number of terms grows like (m + d)!

/mid!, which explodes exponentially as either d or m gets large.

..8-

Given Figure 2, and a familiarity with the Backpropagation Algorithm
it is natural to insert a layer of nonlinear "hidden units" and to use back
propagation to control the weights (Fig. 3). "Hidden units" are elements
that do not have a linear neural transfer function. Instead, the neural
transfer function is sigmoidal as shown in Figure 4. Hidden units greatly
extend the power of neural networks and can be controlled with the back
propagation algorithm. In addition to the weights, Tij‘ there are also the
thresholds, Ii' that shift the position of the sigmoid. Thus, if Xi are
inputs to a hidden wunit, the output of the unit is not merely the

1

linearly weighted sum, ITinj. + I but the output of the sigmoidal
i s
transfer function g(ZTijxj + 1.). The Ii shifts the sigmoid to the left or
J

i
right. Training the system involves minimizing an E function which is now
somewhat more complicated than Eqn. 3 because of the nonlinear g() func-
tions. Nevertheless, a steepest descents algorithm is often used in back
propagation to minimize E.

Back propagation may thought of as a particular, nonlinear, least
squares algorithm. It may also be thought of as a generalization of the
Perceptron formalism where the discontinuous, Heaviside step function used
for the Perceptron's neural transfer function is smoothed into the con-
tinuous, sigmoidal transfer function. It is a natural, nonlinear,
extension of the linear nets commonly used in adaptive signal pro-
cessing. Use of the chain rule in computing derivatives of E provides a
useful interpretation to the minimization process and allows an easy
generalization to multilayers of nonlinear hidden units‘(l) For one

, - i

or more output units one ‘minimizes

E= 1 [targ{P) - 0Py (5)

pi

-9-

where the targgp) are the specified target outputs for the pth input

pattern, and Oi(p) is the actual output of the network's ith

output unit

given the pt'h input.pattern and the present set of weight, f',, ‘i‘ E is
to be considered as a function of Tfj and Ii‘ For the linea; predictive
net considered earlier, expression (S) collapses to a simple form. for
this case, the sum over i contains just one term i = 3, while the
target output targgp) would be targgp) = X3(tp + 24), and ng) would be
ng) =3 Tijxj(tp) +I;, i.e. a linear function of the inputs to unit 3.
If a :onlinear layer of hidden neurons were inserted into Figure 2,
then 03(p) would also contain contributions from the outputs of the hidden
layer. Because the hidden layer has the nonlinear transfer function g(),
the output of the hidden layer is now a nonlinear function of its inputs,
and E in Eqn. (5) becomes the square of a nonlinear function of the weights
because the hidden layer outputs feed into the topmost output layer.

Steepest descents is performed in the normal fashion by letting

il JE)
By =" ® §,; (6)
1]
Defining some intermediate quantities simplifies the partial deriva-
tives in Eqn. 6. Let

= § Tijoj + 1 (7)

be the net input to unit i from the outputs, Oj, of other neurons in pre-

vious layers connected to neuron i. The output of neuron i will then be

U SRR DY Ry 1 8

If one introduces another'dhantity‘éi defined as

.
a8 anet. (2)

Ly

2 .88

then one obtains:

ak . . ¢
- rrlalt (10
1]
Thus gradient descent is implemented by making changes in ’ij by the
amount AT”. where
AT, = - € 235 = ¢8,0 (11)
B] ar 74

1§
where ¢ s a small nuaber. 61 say be computed by the chain rule. If
unit 1 s an output unft then 6' becomes:

8, = £ (targ{P) - 0{P)) g(net,) (12)
P

where g°() f{s the derivative of g(x) with respect to x. If i is not an
output unit, then 6i say be computed recursively starting at the topmost
layer (which is the output layer):

Equations 11, 12, and 13 define the backpropagation steepest descents
procedure for nonlinear neural nets as outlined in Reference (1). The
name “back propagation* arises from Eqn. 13 where an error signal is
propagated back from the output neurons to other neurons of the network.
I11. Prediction

To f1llustrate the use of the nonlinear neural net formalism, we
choose to predict in such a complicated time series that it is “randoa" and
ergodic. The serfes fs generated by iterating the classic logistic, or
(12)

Feigenbaum, map

x(t + 1) = 4bx(t)[1 - x(t)] (14)

Jlaga & S S——

ii

-11_

where b is set to 1.0. This map is not known tn the investigator, of
course. He has only a set of samples from the time ~eries and 15 required
to use these samples to perform prediction. This iterated map produces an
ergodic, chaotic time series if b is choosen equal tn 1. (Other values of
b lead to fixed points, limit cycles or chaos as ducumented in Peference
12.) Although the time series passes virtually every test for randomness.
it {s generated by Eqn. 14 and therefore may be thought of in analogy to
a pseudo random number serfes. It is widely conjectured that important
instances of randomness in llaturc“' Ll R (e.g. the onset of
turbulence) are due to the deterministic chaotic behavior produced by
similar nonlinear iterated msaps.

Because the map, Eqn. 14, is polynomial, it is clear that the con-
ventional Gabor method (10)
second order polynomial. We chose this simple nonlinear problem to

would also work very well if one used a

introduce the procedures we will be using, and to desonstrate that non-

linear neural nets can very accurately model polynomials, in addition

2 to more general nonlinearities. Also, we will return to this example
S in Section V, where we are able to graphically demsonstrate how the

nonlinear neural net adds up sigmoidal nonlinearities to approximate

5 quite arbitrary functions. A msuch more complicated example will be
. considered shortly in which polynomial methods are clearly inferior to
P nonlinear neural net methods.

-7 Our ,ual is to use the back propagation algorithm to adjust the Tij'
~ 1., enabling a prediction of the next point x(t + 1) in this "“random"

‘.
series given the present point x(t). We chose a network architecture with

5 hidden units as illustrated in Figure 5 and trained the system, using

back propagation, on 1000 sets of (x(t),x(t + 1)) pairs. The output unit

was a linear unit. The trained network was then used to predict one time
step into the future for 500 additional points. We always assume that the
“past” data needed to perform the prediction, in this case x(t), is

-12-

obtained from observing the actual time series. [Thus one makes a
pre-diction, observes what actually occurred, and uses the actual, observed
value to make the next prediction. The normalized root medan square
prediction error was 1.4 x 10_4. fNormalized“ means that the root mean
square deviation of the predicted values from the actual values is divided
by the standard deviation of the data. We will refer to this normalized
quantity as the "index." This measure is independent of the dynamic range
of x(t). Because the series is "random" and ergodic, the only way that the
net can perform so well is if in the training procedure it learns to very
closely approximate the underlying nonlinear map, Eqn. 14, that generates
the series upon iteration. Recall that the network sees only "random"
numbers and has no apriori knowledge that a mapping exists between these
numbers.

In this situation, the map is simple (polynomial) and prediction is
not done very far into the future. In Section V, we explicitly show how
the neural net approximated the map of Eqn. 14 using data from the time
series. This simple quadratic map couid also have been exactly recovered
from the time series by using a linear network and including multipliers at
the tap lines to form polynomials in the data. The E function to be min-
imized would still be quadratic in the weights although the data terms
would now be a general polynomial including powers beyond quadratic. This
is the method of Gabor, Weiner, Volterra(lo). Although prediction can be
improved over that achieved by the normal Linear Predictive Method, (for
this simple example, the polynomial map could be recovered exactly) in
general this;multiplicaﬁéve methéd will be inferior in predictive ability
to that provided by nonlinear:neural nets (in the following more comp-
licated example it is worse by orders of magnitude). Furthermore, the multi-
plicative method suffers from an explosion in the number of weights as the

numher of tan delaﬁs and the aorder aof the nolvnomial is increased.

*x

N

..13..

We should also point out that we chose one input neuron in the network
architecture, Figure 5, solely for illustrative purposes. Adding more
input neurons (i.e. choosing additional delayed values from the time series
for input) actually increases the predictive accuracy, at least tor the
case of 3 input neurons that we tesi_ed.

A second, much more complicated test of predictive ability, was

suggested to us by D. Farmer and J. Sidor‘ovit.ch.13 In this example the

time series is generated by a delay differential equation

dx(t -

Xt - (o1 - ey (15)
1+ X (t - 1)

that was first investigated by Mackey and Glass.(u) Keeping the parameters

a and b fixed at a = .2 and b = .1 leaves t as the only adjustable param-

eter. As t is varied the system exhibits fixedpoint, 1limit cycle, or

chaotic behavior. Choosing t = 17 yields chaotic behavior, and a strange
attractor,(ls) with fractal dimension approximately 2.1. t = 30 yields a
strange attractor with the fractal dimension approximately 3.5. Higher
values of t yield higher dimensional chaos. Note that because of the
delay, x(t - 1), the phase space of this system is infinite dimensional.
However, as time progresses the system collapses onto the low dimensional
strange attractor. Other infinite dimensional chaotic systems, such as
nonlinear partial differential equations, also display collapse onto low
dimensional attractors. Thus, the Mackey-Glass equation (15) exhibits in
the simpler setting of nonlinear, differential equations behavior that
occurs in.:_ much more' ‘complicated systems such as nonlinear partial dif-
ferential equations.-;A detailed analysis of the chaotic properties of
equation (15) may be found in Reference (16). At t =17, x(t) appears to

be quasiperiodic and the power spectrum is broadband with numerous spikes

N

_14-

due to the quasiperiodicity. At tv = 30 X(t) is even more irregular.

Figure 6 shows a plot of x(t) vs t for a time span of 500 time steps for
both v = 17 and vt = 30. A constant function was u.ed as the initial
values, and transients were allowed to die out before the plot was startec.

Packard et al.,(17) have demon;trated that an attractor may be recon-
structed from a time series by using a set of time delayed samples of the

series. If A is a time delay, and m is an integer, then one may write for

points on the attractor

x(t + P) = f(x(t), x(t - 4), x(t - 23) ... x(t - ma)) (16)

where P is a prediction time into the future and f() is a map. This may

be viewed as an m + 1 dimensional surface. Thus, the “embedding dimension"
dE' is defined to be m + 1. Takené18 has proved that a least upper bound
exists for which f() will be a smooth map. If the dimension of the

attractor is defined to be, dA‘ then one needs an embedding dimension less

than or equal to 2dA + 1, i.e.:(la)

dg < 2dy + 1 (17)

A minimal requirement is that dE > dA‘ It is perhaps surprising that
a smooth functional form, such as Eqn. 16, relates values in a time series
generated by complicated nonlinear differential equations such as Egn. 15.
That such mappings exist is a consequence of Takens theorem,(ls) however
the theorem provides no information on the form that f() may take. We
will show below that the neural net uses data from the time series to
provide an exp]iCit,,@Lalyticq1. expression that globally approximates f()
to a sufficient degree to bgfab]e to perform prediction using equation (16)

with an accuracy that exceeds the conventional Linear Predictive method

and the Gabor,-Weiner, Volterra method by orders of magnitude.

o™

- 15-

We will now test the predictive accuracy of the nonlinear neural
(2).(3)

net and compare it to the conventional methods of | inear Prediction

and Gabor Polynomial Prediction(lo). The test will be performed twice,

once using a time series generated by the Mackey-Glass equation (15) at
t = 17 (fractal dimension = 2.1), and~ once using the Mackey-Glass equation

at v = 30 (fractal dimension = 3.5). First consider the v = 17 time

series shown in Fig. 6a. Using Egn. (17) we select an embedding dimension,

d equal to 4. This specifies m in Egn. (16) to be m = 3. It now

E\
remains to chose A and P. To facilitate later comparison to an alternative

predictive method of Farmer et al.(n). we choose A = 6. These choices

of m and A imply that a prediction made P time steps into the future
past the last observed point x(t) will be made using observed data at
times: x(t), x(t - 6), x(t -12), and x(t -18). There are therefore four
inputs to the nonlinear neural nets, representing these values of x(t), and
one linear output element representing the value x(t + P). We chose 20
hidden units arranged in a two layer architecture. Therefore, the
architecture of the network appears ‘as Fig. 7. Each neuron in Fig. 7
is connected to all the neurons in the directly previous layer. This
architecture was choosen rather arbitrarily and seemed to yield quite
acceptable performance. Other architectures gave comparable performance.

We now need to choose the prediction time P. It is desirable to
test the predictive accuracy as a function of how far the prediction is
made into the future, so we will choose several values of P. For any
given P there are two ways that a prediction P time steps into the future
past the 'l;s-t. obs;rvegi;data point may be made. The first way is to train
a separate network for each thvoice of P. For example, if P = 6 then one

may train a network using a set of samples: x(t‘.), x(ti = 63, x(t, - 12).

x(t.i - 18) on the four inputs, and x(t.i + 6) on the single output. This

natwork. after -.trai'n‘lng, will then map any future set of xo(ti). xo(ti = 8

-16-

xo(t.i = 12), ﬁo(ti - 18) (where superscript "o" indicates observed values)
into the set x(ti + 6). In this method, one assumes that the data needed

to predict at, say, t = 1,000 is the observed values of the time series at

x%(994), x°(988), x°(982), x°(976). The network might have been trained.
for example, on data taken from t < 0. A prediction at any arbitrary time,
t, in the future is made using the l;st four observed data points. Thus,
no matter how far ahead one is predicting in the time series (e.g. t =
1,000), the prediction is never more than P time steps (in this case P = 6)
past the last observed data point. If, in the example above, one wished to
predict 12 time steps into the future past the last observed point, then a
second network would be trained using x(ti + 12) on the output neuron.
This second network would always predict a value 12 time steps past the
last observed point.

To see how predictive accuracy degrades with increasing P we trained 8
separate networks to make predictions at P = 6, 12, 24, 36, 48, 60, 72, 84,
and 100 time steps past the last observed point. We computed the normal-
ized root mean square index of accuracy (index = (root mean square
predictive accuracy)/(standard deviation of the data)) for 500 predictions
and plotted the results, for v = 17 data, in Fig. 8a. We did this for the
nonlinear neural net, the Linear Predictive method, and the Gabor
Polynomial method. The polynomial order was choosen to be equa: to 6,
yielding roughly the same number of polynomial coefficients as weights in

the nonlinear neural net. This was also done for the second (t = 30) time

series and these results are plotted in Fig. 8b. The embedding dimension

in this cagé (t = 30) was choosen to be 6. The Linear Predictive method
needed 2,000 data points in-tfaining to achieve any reasonable accuracy,

while the Gabor method and the nonlinear neura' net method seemed to do

A8

7 -

.17-

well with 500 data points. It may be seen from Figures B8a, and AL that
the nonlinear neural net, using the predictive method just descrited,
performs best. There 1is, however, a second way in which one ran mavs
predictions at various P values, in which the neural net perfores far
better than the method just described, and to which the alternative,
conventional methods can offer little competition.

The second way to make predictions at various choices of P is to place
previously predicted values on the input lines to bootstrap one’'s way to

higher P values. That is, one fterates the mapping provided by the non-

l1inear neural net. For example, after training a network to predict at P

"

6, one can feed the predicted values back into the inputs to predict at P
12, 18, 24, ... etc. Thus, {instead of training separate networks to
predict at P = 12, 18, 24, ... etc. (as described above) one can simple
iterate the mapping provided by the P = 6 network. There are tradeoffs
implicit in this iterative approach. Because previously predicled values
(made with some error) are used to make subsequent prediction, the errors
get magnified upon iteration. Iterating a P = 6 net once, to form a P = 12
net will not magnify the errors very such. However, unless the P = 6 sap
was an extrewely good approximatfon to the actual P = 6 map implied by
Takens theorem, further fteration of the P = 6 map will soon get to be a
dar.gerous procedure. It fs {intuftively clear that a P = 6 map is less
frregular than say a P = 36 map (think of how the map changes upon
fteration for the classic logistic map) and so it seems reasonable to
belfeve that one does have a possibility of forming an extremely good
approximation to the P = 6 map, and avofding the danger just described.
Ultimately, one will magnify the errors to an unacceptable degree, but this
may not happen until the effective P is quite large, i.e. for a large
number of iterations. Tc test this conjecture, we iterated the P = 6 map
for both the nonlinear neural net and the Gabor polynomial method, and

collected results on the 1{index of accuracy in the same way as

2

3 3 I

7 -

- 18-

before. These are the final two curves plotted in fig. #a (r = 17) and
Fig. 8b (v = 30). It is immediately obvious that for the nonlinesr reural
net the danger just described was overcome, and that this procedure 7 3
far better procedure for making predictions at large P It is alsn readily
apparent that the Polynomial method is wildly numerically unstablie unger
this procedure (due to the errors getting grossly magnified by the nign
order polynomial terms). Figures B8a and 8b clearly show that tre
fterative, nonlinear neural net procedure is orders of magnitude wmore
accurate than conventional procedures for large prediction times, P. Our
chofce of fiterating the P = 6 map was an informed guess, it say well De
that another choice of P would yeild even better results, although we have
not investigated this. Further increased in accuracy say be obtained by
ifncreasing the number of hidden units in combination with increasing the
number of training patterns.

A new predictive algorithm has recently been published by Farmer and
Sidorovit.ch.(U) The number, and values of the delays for the nonlinear
neural net method for the Mackey-Glass equation were choosen to agree with
those used by Farmer et al. in testing their very recent and powerful Local
Linear Predictive Nlthod(u) (not to be confused with the conventional
Linear Predictive Method described earlier). The accuracy of the Local
Linear method and the nonlinear neural net method (perhaps best described
as a global, nonlinear method, see Section V) are roughly comparable for
this problu.(lg) Increases in accuracy in one method over the other can
be achieved by twiddling the respective algorithms, however the main
conclusion is that both methods are orders of magnitude more accurate than
conventional methods (including the global polynomial method of Gabor et
al.(m) and the Linear Predictive Hethod.(z)'(3) and indications are that
both methods may be used to achieve the fundamental limits on predictive
accuracy dictated by the nature of chaos.

It seems that the nonlfinear neural net method will be very useful for

. Fusaday -‘LM & hlr;‘,.“' TR PRGN RIRK Y e

-19-

performing prediction in real time, and for other real time signal ro-

cessing applications, such as adaptive control and system modeliing. Inis

is due to the natural mapping of neural nets onto paraliel narwarv.(m}
with the resultant possibilities of training times on the order of m cro-
seconds. Prediction times (the time taken to make one prediction after
being trained on the data) are already quite short, due to the simplicity
of feedforward networks, however these times could, of course, also be
reduced to microseconds, or so, if done in hardware. Ffurthermore, the
nonlinear neural net method seems to be achfeving roughly comparable
accuracy to the Local Linear Method of Farmer et ‘,'(13). (23) us ing
only 500 points from the time series, whereas the Local Linear Metnod
uses 10,000 - 20,000 points. Parsimony in the requirements for data
points from a time serfes 1is a considerable advantage, as a large
number of data points may be collected only through using very short

sampling times, or else collecting data over a long time. In many

applications the use of short sampling times, or long data collection

~ times, is either undesirable (short time samples are more correllated,
«~N hence yfelding less information) or infeasible (the data over a long time
= say be unavailable). To be fair, the nonlinear neural net method requires

a longer run time for training in computer simulation (30 - 60 minutes on a

Cray X-MP, compared to a few minutes on an X-MP, for the Mackey-Glass

: P = 72 example using the Local Linear Method). However, the neural net
.- method also yields more information than the Local Linear Method as a
~ result of training (see Section V) so it is not yet clear which method is
& faster (when simulated) in producing the same amount of information
, IV. Nonlinear System Modelling
; A second subject of considerable interest in signal processing is the
.‘5 system modelling problem. Here one wishes to construct a model for the
:? transfer function of an unknown "plant" using only a finite data set of
”"; fnputs, and assuciated outputs, of the plant. Applications include adap-

_20-
tive control among other topics. We choose a relatively +imple nonlinear

transfer function, x » x2, which is depicted in Figure | lhe reason for

choosing this example as an illustration of the method i+ that there is a

tunction and the

modelled tr.:sfer function. A polynomial Gabor, Weiner, VO'!NFFE(IJ)

nice graphical way to depict both the actual transfer

me thod

would also work quite well for th}s simple example. We chose it to simply
illustrate how a nonlinear neural net works, and not to demonstrate the
relative effectiveness of the neural net method. This was already done in
the previous section.

A neural petwork with 2 input units, two layers of hidden units and
one output unit were trained on an [/0 data set generated by passing a

relatively broadband input function through the block box of Figure 1. The

network is shown in Figure 9. The input was a sum over twenty frequencies

with random phases in the range [0,1].

0
in(2net + 02) (18)

2|

2
x(t) = b3

]
2=1

that was sampled at times separated by .001 between t = 0 and t = 1. The

factor N is a normalizer that normalized the resultant output (x2) to a

maximum value of 1.0. The normalization was performed soley for computa-
tional convenience. Inputs and outputs h.-‘~q arbitrary dynamic range are
easily handled by a scaling agreement, as described in Appendix I.
Training was accomplished by taking data points from Eqn. 18 over a time
interval [0,1] and setting the inputs to be x(t) and x(t - .001), with the
output seg to be iz._ Backpropagation was used to adjust the weights.

After training ~i; complete, one should be able to input a new
waveform, x(t), and have ;git) emitted by the output unit of the neural
network. We selected another wave form, similar to Eqn. 18, except with a
different choice of random phases. The normalized rootmean square accuracy

for the test waveform was .0476.

-21-

This example was choosen because it is puossible to graphically

demonstrate that the neural net actually learned the algorithm, x(t) -

x (t), from a finite data set of input/output pair, First of all, we plot
the actual algorithm, x -+ x2, by graphing x2, vs («(t), x(t - .001)). A
finite difference approximation to x2 is

22 = 9 - 2 2

x“(t) = [x(t) - x(t - .001)]° /(.001) (19)

which of course yields a parabolic trough if Z = x2(t) is plotted vs x(t)

on the x axis, and x(t - .001) on the y axis. Note that we are not using
values for x(t) and x(t - .001) taken from a particular wave form to
produce the plot. Instead, x(t -.001) is con<idered to be an independent
variable from x(t), and we plot the functional dependence of iz(t) on the
two independent variables. Thus we imagine x(t) to be an x axis variable,
x(t = .001) to be a y axis variable, and plot the graph Z =
(x - y)2/(.001)2. The resultant graph (Z = (x - y)2/(.001)2 is shown in
Figure 10. We have rotated the axes so that we are looking straight down
the trough.

Next, we consider the algorithm that was learned by the neural
network. After training, the output neuron value (x2(t)) is a well defined
function of the values of the input neurons x(t), x(t - .001). The
function is a complicated sum involving tgnh()'s (due to the sigmoidal
transfer function of the hidden units), and certain coefficients, which are
the actual values of Tij and Ii that were determined by the training
algorithm. This function is easily plotted in an analogous manner to the
previous figﬁfe andwislfkown in Figure 11. Here again, x(t) and x(t -
.001) are taken to be independent variables (i.e. not from a particular
time series), and the value of‘the output neuron is plotted vs the values
of the two input neurons in the same rotated coordinate system. Note that

a naraholic troudh does appear in Figure 11, although as one proceeds away

i

-22-

from the bottom of the trough the sides stop rising and flatten out. ihis

flat reqgion is irrelevant. The region of interest is the bottom of the

trough, because it is only in this region that x(t) ~ x(t - .001),

indicating a sufficiently small sampling time to be able to approximate

x2(t) by the finite difference approximation. We depicted the "flattened
region"as well solely for illustrative purposes. In Fiqure 12, we plot a
"blow up" of the relevant region, x ~ y, over a range of x between -.1 and
+.1 and similarly for y. It is therefore graphically clear that the
network did learn the algorithm x - xZ(t) because the region x ~ y. cor-
corresponding to x(t) ~ x(t - .001) (which is always satisfied for
continuous wave forms assuming .001 is a sufficiently small sampling
interval) is indeed a parabolic trough. Furthermore, we numerically verify
the accuracy of the network's algorithm by calculating the normalized root
mean square error of‘the network in comparison to the output of the finite
difference approximation for x2 for 10,000 data points evenly spaced over a
square of xe[-.05, .05]); ye[-.05, .05]. The resultant value was .0403,
which is a value of the match of the algorithms. Adding more input units
(further delays) actually increases the accuracy, although of course we
can't plot the output in 3 dimension.

We also note that the parabolic trough is not generated by some sort
of Taylor's series for small input values. The sigmoidal transfer function
used in constructing Figure 12 has only odd terms in its Taylor expansion
and therefore Figure 12 was generated by adding together full sigmoidal
functions with appropriate coefficients (Tij) that are sufficient to
closely appréxfmate:a pafabolic trough in the region of interest. Exactly

5

how a neural net may add together sigmoids to approximate essentially

arbitrary functions is describéd more fully in Scction V. This ability to

approximate functions, polynomial or otherwise, is the reascn for the

success of nonlinear neural networks. A strictly linear network, trained

-23-

with the usual Least Mean Square Rule of adaptive signal processing, would
only be able to produce planes (or hyperplanes, if one used more than two
delays on the input lines) if graphed in a similar manner to Figure 12. A
second order Gabor Polynomial method would, of course, do very well on this
problem, but as seen in the previous séction, it offers no competition in
more complicated examples. Finally, ;e point out that the graphs in
Figures 11 and 12, are a clear example of '"generalization" by neural
networks. After training on a finite data set the neural net was able to
deduce the correct algorithm (compare the troughs of Figures 10-.and 12)
such that when new data is presented a correct output is given. We see
that the somewhat mysterious ability of neural networks to "infer
algorithms" and to perform "generalization" is nothing more than real
valued function interpolation, at 1least 1in the context of signal

processing.

IV. Mode Decomposition by Nonlinear Neural Netwar's

It is natural to ask “why does a neural net do so well at nonlinear
signal processing?” We answer this question by analyzing the simplest
prediction example, the logistic map and then remark on the system

modelling problem. First, note that at the end of the training period, all

the synaptic weights, Tij‘ and thresholds, 11' are specified numbers.

Therefore the output neuron, which represents x(t + 1), is a specified
function of the input neurons x(t). In particular, if we take the weights
which led to the root mean square predictive accuracy (1.4 x 10~4) quoted
in Section III, then one obtains from these weights, and Figure (5), the
formula : &

0.64g(- 1.11 x - .26) - 1.3g(2.22 x - 1.71) (20)
2.285¢(3.91 x=+ 4.82) - 3.905g(2.46 x - 3.05)

5.99g(1.68 x + .60)

+-(.31 x - 2.04)
where g(x) = % (1°+ tanh x).

x(t + 1) =

+

We may write this as

x(t + 1) = T(x(t)) (21)
and compare this map to the actual map that produced the time series

x(t + 1) = f(x(t)) = 4x(t)[1 - x(t)] (22)
A plot of Eqn. 22, i.e. plotting x(t + 1) vs x(t) yields (of course) a
parabolic curve.

A plot of Eqn. (20), again plotting x(t + 1) vs x(t), yieids a
virtually identfical curve over the range 0 ~ 1. Therefore Egn. (20) is a
very good approximation to the global map generating the tise series. The
reason this can occur msay be seen by considering the sus of just two
sigmoids with paraseters a.,b occurring in a similar fashion to the 'ij and

I1,'s in Eqn. (20)

i
S = alg(blx t) azg(bzx +c,) (23)

Parameters b adjust the slope of the sigmofids, c adjust the shifts,K while a
adjusts the amplitudes. If, for exasple, : is positive, while 3, is
negative, and {f < tc, then a “bump” will be formed when the sigmoids are
added togethe: as in Eqn. (20, 23). The function, Eqn. (22), or virtually
any other C(n function, may be approximated very well by appropriately
forming and adding up “bumps.” This is somewhat analogous to the method of
splfnes(u) for approximating arbitrary functions. Splines are constructed
in such a way to maximize smoothness. The smooth form of the tanh acts in
an analogous fashion. Splines are, however, difficult to work with in many
dimensions. A similar effect occurs in the Mackey-Glass example of Section
11, however the four dimensional embedding dimension precludes plciting in
three dimensions.

The way the sigmoids add to approximate a parabola for the logistic
map may be seen in Fig. 13. Figure 13 should be read from left top down to

bottom right. In each window, a term from Eqn. (20) is plotted as a dotted

L —

a

EN

-25-

line and the sum of the terms appearing in previous window are plotted as a
solid line. Thus, window (1) initially shows term (1) 4. « solid line and
term (2), to be added in, as a dotted line. Window (2) then shows term (1)
+ term (2) as a solid line and term (3), to be added in, a. a dotted line,
and so on. The final window showQ_the complete plot of the sum of all
terms in equation 20. Ffach tick mark 1is one unit, so the final bump
appearing between 0 and 1 in window (6) is the approximation to equation
22, which is a parabola with domain of 0 ~ 1 and range ot 0 » 1. We
continued the plots in all windows outside the valid range of 0 ~ 1 just to
show more of each sigmoid that is added in. This range is actually
irrelevant as far as using the network for prediction is concerned, and was
shown for illustrative purposes only.

Adding together sigmoids to approximate a particular function is
(22)

reminiscent of Walsh analysis. Walsh functions are a complete set of

functions, ranging from 0 to 1, that are made up out of step functions. A
common technique of signal processing is mode decomposition of a function
into sums of Walsh functions. A sigmoid may be viewed as a smoothed step
function, and therefore approximating a function with sums of sigmoids
seems somewhat similar to a mode decomposition of the function in terms of
a Walsh function basis set.

This notion that the neural net performs a type of mode decomposition
to approximate a function may be made clearer if one considers transfer
functions of the nonlinear neurons involving trigonometric sin's instead of

sigmoids.(za) This is, if we replace g(x) by
_ s

g(x) = %'(1 + ;in(Bi)), B.= a constant (24)

then g(x) is stiil an element of [0,1] and the back propagation algorithm

will still work i;respective of the form chosen for the transfer function.

LY

i B 8

7

-26-

(The range condition on g(x) : g(x) ¢ {0,1] is not important, we chouse it

for convenience.)

If we now consider Egn. 23, which is a generic form for output in
terms of input for feed forward nets, then we see that the ai's act like
Fourier amplitudes, the bi's like frequencies, and the ci's like phases.
Recall that the a.'s are the synaptic weights of the hidden to output
layer, the bi‘s are synaptic weights o% the input to the hidden layer, and

that the number of g functions (i.e. sin's) that occur in the sum is the

number of hidden units in the hidden layer. Thus, training the neural net
is, in essence, contructing a discrete Fourier series. However, in con-
trast to a normal Fourier decomposition in which the values of the fre-
quencies are fixed, the net has the ability to adjust the values of the
frequencies to obtain the minimum least mean square error. The number of
adjustable frequencies is determined by the number of neurons in the hidden
lqygr. It is, therefore, clear that specifying the number of hidden units
specifies the number of frequenciés available to the net, and that the net
then adjusts the numerical value of these frequencies, and their amp-
litudes, and phases, to produce a best fit. Presumably, adding more hidden
units, i.e. adding more adjustable frequencies, will improve accuracy.
Because in conventional Fourier Mode Analysis only the amplitudes are
adjusted, and the frequencies are fixed, we label the mode decomposition
performed by the neural net “Generalized Fourier Decomposition," where
Further

“generalized" refers to the ability to adjust frequencies.

generalizations are possible by considering multilayer networks and

different expressions for the transfer function. We point out that

using sin's often leads’ to numerical problems, and nonglobal minima,

whereas sigmoids seemed; to avoid such problems throughout all our

extensive simulations.
It is worth emphasizing that' the network is not anproximating by a

Mode decomposition-the time serfes that was used in training. For chaotic

Y A S P

oo

4

3

8

{ oo

-27-

time series, there is a huge spread of frequencies and we have typically
given the neural net a relative few number of hidden units. Instead, the
neural net is approximating the underiying map that qenerates the time
series.

In the logistic example the neural net, of course, approximated the
parabolic map that was used to generate the time series. In the Mackey-
Glass equation a nonlinear differential equation generated the time series.
However, it is known on general grounds that a deterministic, nonlinear map
underlays the time series, (see Section [Il) although the form of the map
is not known. It is this map that was approximated by the neural net
using data from the time series. The ability of neural nets to provide
explicit formulae that are excellent approximations to the unknown maps
implicit in chaotic time series may be of interest in the analysis of chaos

and other nonlinear behavior. Finally, we note that the parabolic trough

plots in Section IV are an example in two dimensions of this type of

analysis.

VI. Summary

We have shown that the back propagation algorithm for nonlinear neural
nets is a natural generalization of the widely used LMS rule or Linear
Predictive Method for signal processing. Use of back propagation in the
context of signal processing allows solution of nonlinear system modelling
problems as well as excellent prediction on complicated, "“random," time
series. Predictive performance greatly exceeds all known (to us) conven-
tional methods of prediction including Linear Prediction(z)'(3), Global

Polynomial(lo) methods and is competitive with the new Local Linear
Method.(13): In additiq?, the network provides an explicit, global, approx-
imation to the underlying nonlinear map with minimal requirements for data
points from the time series. :Specific applications have not been discussed,
however it seems that there are many. One may expect that other areas of

signal processing, in addition to prediction and system modelling, way

3

-28-

be fruitfully investigated with this method. The advent of neural net
nardware (20) will make certain real time applications possible.

Among the issues not addressed in this paper are:

(1) the effect of nonglobal minima (not a problem in our simuiations)

(2) the effect of noisy data; aAq

(3) procedures to update predictions "on the tly" a la Kalman-
Bucy.(24)

Acknowledgements

The authors would like to express their gratitute to Doyne Farmer and
Sid Sidorovitch for so generously sharing their prepublication results and
insights on their alternative method (Local Linear Method) for performing
prediction(13)'(19). The Glass-Macky example was suggested by them and
they provided the data generator. The authors would also like to
acknowledge extremely useful conversations with Y.C. Lee involving the
theoretical underpinnings of this work. The generalized mode analysis
discussed in Section V was developed in conversation with Y.C. Lee, and he
made the initial suggestion that such an interpretation may be possible.
Finally, the authors would like to thank Carolyn Algire for expert typing
of a difficult manuscript under deadline pressure.

Appendix I: Scaling and Dynamic Range

We have found that the certain numerical problems could be avoided by
having inputs and outputs in the range of 0 » 1 during training. We will
give a simple scaling procedure that scales the weights that come from
training on variables 0 » 1, to those appropriate to handle inputs and
output variabigs of arbitﬁ;ry dynamic range. Note that the numbers for the
normalized root mean squar; index Qf accuracy that we quote in the text are

independent of dynamic range. §uppose that the real world Inputs X‘". and

Outputs, XOUt have. an extended dynamic range i.e. greater than 0 - 1. We

oAl

-29-

can always write them in terms of variables x'" and x"”t that range
between o and 1:
e WL (A1)
Xout = yx out, &

where «, B, y, § are appropriate constants that adjust the range: 0 - 1 of

x‘n, xout to the range: min X" o max x'" and min XoUL + max XOUt; where

min and max refer to the minimum and maximum values of X' and x°Ut in the
training set. One then trains the nonlinear neural net using the variables
x'" and xout with range 0 + 1. This results in a set of weights and thres-
holds, Tij

We ncw wish to scale Tij and Ii to enable the network to handle the

and Ii' geared to the range 0 -+ 1.

real world dyramic range of the variables X'". X°Ut. We will describe the
scaling procedure for a network with a single hidden layer and Input -

Hidden -+ Output connectivity. Similar arguments work for any network

connectivity.

First, consider the connections between the Input and Hidden layer. If

xj'n represents the inputs in a range 0 + 1, then the Hidden layer produces
an output involving the nonlinear transfer function g()

g(ZTijx;n +1) (A2)

J
If one now used the original, real world, values Xj°“t for the Input layer

then the hidden layer would, of course, output a different number. We wish

to scale T}. andli to Tijscgled and Iiscaled so that the hidden layer

J
e 8 T ; scaled scaled
when using X. = and Tij A ¥ :

J
number as from expression (A2). It will then be trivial to scale the

will output the same number as

Hidden + Qutput connections to get the .outputs in the desired dynamic range.

Thus we require:

g(zTi.x!“ + Ts) = g(:T??a]ed xin . Igcaled) (A3)
j g3 1 j LR J 1
Equations (A3) and (Al) then yield (for Input - Hidden connectinns)
scaled _
Tij = Tij/“ (Ad)
13ealed = [- (pradaT,
1
J
Since the Qutput layer sees
(AS)

;590) + I,
J
where j ranges over the Hidden 1indices, and since g() 1is outputting

the same value for the scaled inputs as for the unscaled inputs, we
see from the Eqns. (Al and AS) that we merely need to define

7scaled _ (A6)

ij LLEY
I§ca]ed - YIi + 5

i
for the Hidden + Output connections to achieve the desired dynamic range

for the outputs.

Similar scaling arguments work for arbitrary connectivity. If the

traning data set is not typical of the range of values to be used for later
prediction, then a possibility for error exists. However, one must always
assume the training set is a typical data set, or else the whole concept of

training fails. We also reiterate that the normalized root mean square

index of accuracy used throughout this is insensitive to the scale of the

data. _)
Appendix II: ‘A Note on Sjmulations

In contrast to simulationé of problems involving symbolic data, where

an accuracy of .1 is commonly used to generate answers where outputs are

identified as 0 or 1.5'(1),(9) the real number problems caonsidered in this

paoer require high accuracy. For this reason, we typically ran our simula-

-31-

tions on a Cray X-MP to speed-up convergence to an ¢ract minimum In
addition, we found that use of a conjugate gradient mirmizing procedure,
instead of the commonly used steepest descents procsdure, produced orders
of magnitude speedups in convergence. All simulatinn. were run with 2
general purpose mathematical simulation package that :+» in development by
R. Farber at Los Alamos. The package includes a general purpose, menu
driven, interactive frontend module (written in C), which accepts networs
parameters and also data files. It then communicates them to a computas-
tional module that can be written fn either C or Fortran, which can then be
run on any number of machines, including parallel machines. An automatic
code generation module was also developed and used to produce optisally
vectorizing Cray Fortran code. Results are automatically collected at 2
host machine, formatted, saved to dfisk with unique run name file labels,
and a formatted hardcopy is also produced for aiding documentation of the
runs. The package fs still in an experimental state and is presently
tailored to the peculiarities of the Los Alamos computer network. Run times
were on the order of minutes for the logistic map prediction and approxi-
mately an hour for the longer term predictions in the Glass-Macky equation.
These run iLimes were needed to obtain exceedingly accurate approximations
to the minima of the back propagation energy function. Acceptable accuracy
may be achieved with significantly shorter run times, however we decided to
see just how close to the exact minimum one could come given virtually
unlimited run time. It is inherent in the operation of the neural net that
it produces an excellent global approximation to the maps underlying the
time series. If such a global map were produced by patching together a
large number of local linear approximations obtained from the method of
Farmer and Sidorovitch then presumably run times of similar length would be
encountered. The advent of parallel, neural net hardware (chips) should

allow the nonlinear neural net method to run in real time for numerous

signal processing applications.

*

3 83

-32-

References

(1) D. Rummelhart, J. McClelland in "Parallel Distributed Processing,”
Vol. 1, M.1.T. Press, Cambridge, MA (1986).

(2) B. Widrow, S. Stearns, “Adaptive Signal Processing," Prentice Hall

Inc., Englewood Cliffs, NJ (1985).

(3) 8. Widrow, M. Hoff, "“Adaptive Switching Circuits,” 1960 WESCON
Convention Record part IV, p96 (1960).

(4) 0. Ruelle, f. Takens, Comm. Math. Phys. 20 pl67 (1971).
(5) H. Swinney el al., Physics Today 31 (8), p4l (1978).
(6) K. Tomita et al., J. Stat. Phys. 21, p65 (1979).

(7) H. Haken, Phys. Lett. AS3, p77 (1975).

(8) D. Russell et al., Phys. Rev. Lett. 45, pl175 (1980).

(9) T. Sejnowski et al., "net Talk: A Parallel Network that Learns
to Read Aloud," Johns Hopkins Univ. preprint (1986).

(10) D. Gabor et al., Proc. Inst. Electr. Eng. 1088 (July 1960), see also
“The Volterra and Weiner Theories of Nonlinear Systems," M. Schetzen,

John Wiley, and Sons (1970).
(11) J. Makhoul, Proc. IEEE 63 No. 4, p561 (1975).
(12) M. Feigenbaum, J. Stat. Phys. 19, p25 (1978).

(13) 0. Farmer, J. Sidorvitch (private communication), see also their
preprint "Predicting Chaotic Time Series," (Los Alamos National

Laboratory, 5/87)
(14) M. Mackcy, L. Glass, Science 197, p287 (1977).

(15) for more on strange attractors, see: E. Ott, Rev. Mod Phys. 53,
No. 4, p655 (1981).

(16) D. Farmer, Physica 4D, No. 3, p366 (1982).
(17) N. Packard et al, Phys. Rev. Lett. 45, No. 9, p712 (1980).

(18) F. Takens, "Detecting Straﬁge Attractor In Turbulence," Lecture
Notes in Mathematics, D. Rand, L. Young (editors), Springer Berlin,

p366 (1981).

(19) D. Farmer, J. Sidorovitch (private communication).

i)

apme

-’i ‘w

7 488

REFERENCES (continued)

(20) H.P. Graf et al., "wiSI Implementations of 3 Neural Net Memory
with Several Hundreds of Neurons," pl82, A.1.P. Conference Proceedings
#151, J. Denker (editor), American Institute of Physics, NY (1986).

(21) C. de Boor, "A practical Guide to Splines," Springer verlag, - NY
(1978). :

(22) M. Maqusi, “Applied walsh Analysis," Heyden and 5Sons Ltd., London,
England (1981).

(23) For a reference to the use of trigometric sin transfer functions
in backpropagation, see €. Baum, A.I.P. Conference Proceedings
#151, American Institute of Physics, p47 (1986).

(24) “Kalman Filtering," H.W. Sorenson, editor I1EEE Press New York,
(1985).

Figure 1 -

Figure 2 -

Figure 3 -~

Figure 4 -

Figure 5 -

Figure 6a -

Figure 6b -

Figure 7 -

- Figure 6b is a similar plot to Figure 6a for 1 = 30.

FIGURE CAPTIONS

A plant implementing the nonlinear transfer function

B

A linear feedforward neural net representation for linear

prediction.

A feedforward neural net with a nonlinear hidden layer
for prediction. Arrows schematically indicate the feed-
forward connections from Input to Hidden to Output layers.

The transfer function g() of a hidden unit is commonly
taken to be a nonlinear, sigmoidal function with range
0 » 1. This is a plot of g(x) = k(1 + tanh(x)). The
exact analytic form of .the sigmoid is not critical to

results.

A network with 5 nonlinear hidden units used to predict
x(t + 1) given x(t). The arrows schematically indicate
connections from the Input layer to all the units in the
Hidden layer, as well as connections from all Hidden
units to the OQutput unit. Also, the Input layer directly
connects to the Qutput layer.

A plot of x(t) vs t for a time span of 500 time steps
in units where t = 17 for the Mackey-Glass ecuation (15).
There is a quasiperiodicity, however details of the bumps

change chaotically over time.

i

The 2 Hidden l;yer network architecture for prediction
in the Mackey-Glass equation (15). The arrows schematically
indicate connections from Input to Hidden to Output layers.

Fiqure 8a -

Figure 8b -

Figure 9 -

Figure 10 -

FIGURE CAPTIONS (continued)

A plot of the normalized rootmean <wquare error (the

root mean square error divided by the «tundard deviation

of the data) versus‘_ prediction time step, P, into the
future for the Mackey-Glass equation at 1 = 17. Ffive
curves are shown, labelled A, 8, C, D, £t. A = Sixth order
polynomial (iterated from P = 6). B - [Ihe Linear Pre-
dictive method. C = Sixth order polynomial trained at
each prediction time step, P. D = Nonlinear neural net

trained at each prediction time step, P. E = Nonlinear
neural net (iterated from P = 6). The iterated polynomial
is wildly unstable and quickly blows up. The iterated
nonlincar neural net performs best.

An identical plot to Figure 8a except for the Mackey-
Glass equation at t = 30. The labelling of the curves
is the same. The success of the iterated nonlinear neural
net method is even more evident.

The 2 Hidden layer network architecture for modelling
x + x2. The arrows schematically indicate connections
from Input to Hidden to Output 1layers. Another net-
work, with a single layer of 40 hidden units performed

comparably to the 2 layer network.

A graph of xZ = [x(t) - x(t -at]/(at,? where At = .001
and Z = x2 is plotted as a function of two independent
variables x = x(t), y = x(t - At). The axes have been
rotated so that one is looking straight down a parabolic
trough. . In the rotated coordinate system, the region

- x(t) :_;((t = .:001) is along the bottom of the trough.

The horizonal, <45 degree and vertical lines represent the
X, y, 2z axes. ™ The z axis has been drawn to the left of
the parabola to avoid cluttering the parabolic surface.

& e S

-

8

3

Figure 11 -

Figure 12 -

Figure 13 -

FIGURE CAPTIONS (continued)

The output of the network in Figure 9 plotted a+ a fun-
ction of the two input variables. The range of the plot
has been considerably extended past the range of validity
of the map. The x aﬁd y axes extend to from -1 to 1
while Z extends from 0 to 5.125. The range of validity,
x(t) =~ x(t - At), is along the bottom of the trough
because we have rotated axes so that one is looking

straight down the trough.

A blow up of the bottom of the trough in Figure 11. It
is only the bottom of the trough in Figure 11 that is
relevant. The axes are rotated so that one is looking

straight down a parabolic trough.

A plot of successive sums of terms of equation (20. The
first window contains terml as a solid line and term2,
to be added in, as a dotted line. Window(2) shows the
sum of term(l) + term(2) as a solid line and term(3),
to be added in as a dotted line, and so on. Window(6)
contains the sum of all 6 terms of equation (20) plotted
as a final solid line. Each tick mark is one unit, so
that the approximation to the parabolic map, Eqn. (22),
is contained in the region 0 + 1. Recall that the normal-
ized root mean suare predictive accuracy of this map
was 1.4 x 10—4. i.e. it is an excellent approximation.
Portions of the graphs in windows(l) to window(6) outside
the valid range of 0 + 1 are plotted so that the form
of each sigmoid that is added together may be seen.

1 aunbyy

oo o r
eum -, ANV +-— Q)X

2 a4nbi4

Mx (V- (VT -1)x
1NdNt

iNdiNnO
(Ve+i)x

€ 24anby4

iNndino H

p 94nby4

—

(x)e

G dunbyy

iNdN

iNdino

" \MMM\M ,
‘}HMM/M\ ﬂ/

{ 34nbyy

iNdiNno

|

10

b
V
<
-

T e s e see- i I SR Der amey R b i e B A 3
e
:
R P ‘." i
----- G = N-“--.‘..‘-‘
..........
_______ .
................
.
:
. g
2 =
s —
.
:
:
| -
:
— - 3 B
-”‘
”.‘ 1

\\
/
\

/

o
cenens
ceran.
%
ttererianans
“eoas
PYPPN
.

-
. //
: ==
; e e s D
1: o '-: 1 T 1 1 Il .:f-L4=r==J=?- < :- l B . :
o 100
———— = 17)

Figure 8a

O
(@)
<
7~
(@]
™
S
Ay
[+
-~
Nt
A,
)
o
Om a8
o
o =
g &
o |V
opud
e) “ P
C . @
"m
So
-
A,
O
B ¥ o ¢

6 34nb} 4

N3O0

iNd1INO

Figure 10

Figure 11

!_ —)) - T ..'.'.v_i...'.av.cc.l. - T et

0.05

).0

Figure 12

-.05

™ e s W e

-

(4)

+
*

i
/:'

()

Figure 13

